Copied to
clipboard

G = C62.6C32order 324 = 22·34

6th non-split extension by C62 of C32 acting faithfully

metabelian, soluble, monomial

Aliases: C62.6C32, 3- 1+22A4, C222C3≀C3, C32⋊A43C3, (C32×A4)⋊2C3, C32.A45C3, C32.6(C3×A4), (C2×C6).10He3, C3.11(C32⋊A4), (C22×3- 1+2)⋊2C3, SmallGroup(324,58)

Series: Derived Chief Lower central Upper central

C1C62 — C62.6C32
C1C22C2×C6C62C32×A4 — C62.6C32
C22C2×C6C62 — C62.6C32
C1C3C323- 1+2

Generators and relations for C62.6C32
 G = < a,b,c,d | a6=b6=c3=1, d3=b2, ab=ba, cac-1=ab3, dad-1=ab2, cbc-1=a3b4, bd=db, dcd-1=a2b4c >

3C2
3C3
12C3
12C3
12C3
36C3
3C6
9C6
3C9
12C32
12C32
12C32
12C9
12C32
12C32
3A4
3C2×C6
3A4
3A4
9A4
3C18
3C3×C6
3C18
3C18
4He3
43- 1+2
4C33
3C3.A4
3C2×C18
3C3×A4
3C3×A4
3C3×A4
3C3×A4
3C3×A4
3C2×3- 1+2
4C3≀C3

Character table of C62.6C32

 class 123A3B3C3D3E3F3G3H3I3J3K3L6A6B6C6D9A9B9C9D18A18B18C18D18E18F
 size 13113312121212121236363399993636999999
ρ11111111111111111111111111111    trivial
ρ2111111111111ζ3ζ321111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ32ζ3ζ32    linear of order 3
ρ3111111ζ32ζ3ζ3ζ32ζ32ζ3111111ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32ζ3ζ32    linear of order 3
ρ4111111ζ32ζ3ζ3ζ32ζ32ζ3ζ3ζ321111ζ32ζ311ζ32ζ32ζ3ζ3ζ32ζ3    linear of order 3
ρ5111111ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ3111111ζ32ζ3111111    linear of order 3
ρ6111111ζ3ζ32ζ32ζ3ζ3ζ32ζ32ζ31111ζ3ζ3211ζ3ζ3ζ32ζ32ζ3ζ32    linear of order 3
ρ7111111ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ32111111ζ3ζ32111111    linear of order 3
ρ8111111111111ζ32ζ31111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ3ζ32ζ3    linear of order 3
ρ9111111ζ3ζ32ζ32ζ3ζ3ζ32111111ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3ζ32ζ3    linear of order 3
ρ103-1333300000000-1-1-1-13300-1-1-1-1-1-1    orthogonal lifted from A4
ρ1133-3-3-3/2-3+3-3/2003+-3/23--3/2-3-3+-3/2--3-3--3/200-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ123-1333300000000-1-1-1-1-3+3-3/2-3-3-3/200ζ65ζ65ζ6ζ6ζ65ζ6    complex lifted from C3×A4
ρ133-133-3-3-3/2-3+3-3/200000000-1-1ζ6ζ6500002-1+-3-1+-3-1--3-1--32    complex lifted from C32⋊A4
ρ1433-3-3-3/2-3+3-3/200-3+-3/2-3--3/23--3/2--33+-3/2-300-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ153-133-3+3-3/2-3-3-3/200000000-1-1ζ65ζ60000-1+-32-1+-32-1--3-1--3    complex lifted from C32⋊A4
ρ163-133-3+3-3/2-3-3-3/200000000-1-1ζ65ζ60000-1--3-1+-32-1--32-1+-3    complex lifted from C32⋊A4
ρ173333-3-3-3/2-3+3-3/20000000033-3-3-3/2-3+3-3/20000000000    complex lifted from He3
ρ183333-3+3-3/2-3-3-3/20000000033-3+3-3/2-3-3-3/20000000000    complex lifted from He3
ρ193-133-3-3-3/2-3+3-3/200000000-1-1ζ6ζ650000-1--32-1--32-1+-3-1+-3    complex lifted from C32⋊A4
ρ203-1333300000000-1-1-1-1-3-3-3/2-3+3-3/200ζ6ζ6ζ65ζ65ζ6ζ65    complex lifted from C3×A4
ρ2133-3+3-3/2-3-3-3/200-3--3-3+-3/23--3/2-3--3/23+-3/200-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ2233-3+3-3/2-3-3-3/2003--3/23+-3/2--3-3--3/2-3-3+-3/200-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ2333-3+3-3/2-3-3-3/200-3--3/2-3+-3/23+-3/2-33--3/2--300-3-3-3/2-3+3-3/2000000000000    complex lifted from C3≀C3
ρ243-133-3+3-3/2-3-3-3/200000000-1-1ζ65ζ600002-1--3-1--3-1+-3-1+-32    complex lifted from C32⋊A4
ρ2533-3-3-3/2-3+3-3/200--3-3-3--3/23+-3/2-3+-3/23--3/200-3+3-3/2-3-3-3/2000000000000    complex lifted from C3≀C3
ρ263-133-3-3-3/2-3+3-3/200000000-1-1ζ6ζ650000-1+-3-1--32-1+-32-1--3    complex lifted from C32⋊A4
ρ279-3-9+9-3/2-9-9-3/200000000003+3-3/23-3-3/2000000000000    complex faithful
ρ289-3-9-9-3/2-9+9-3/200000000003-3-3/23+3-3/2000000000000    complex faithful

Smallest permutation representation of C62.6C32
On 36 points
Generators in S36
(1 23)(2 27 8 24 5 21)(3 22 6 25 9 19)(4 26)(7 20)(10 33 16 30 13 36)(11 28 14 31 17 34)(12 32)(15 35)(18 29)
(1 18 4 12 7 15)(2 10 5 13 8 16)(3 11 6 14 9 17)(19 34 22 28 25 31)(20 35 23 29 26 32)(21 36 24 30 27 33)
(2 8 5)(10 36 24)(11 31 22)(12 32 23)(13 30 27)(14 34 25)(15 35 26)(16 33 21)(17 28 19)(18 29 20)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,23)(2,27,8,24,5,21)(3,22,6,25,9,19)(4,26)(7,20)(10,33,16,30,13,36)(11,28,14,31,17,34)(12,32)(15,35)(18,29), (1,18,4,12,7,15)(2,10,5,13,8,16)(3,11,6,14,9,17)(19,34,22,28,25,31)(20,35,23,29,26,32)(21,36,24,30,27,33), (2,8,5)(10,36,24)(11,31,22)(12,32,23)(13,30,27)(14,34,25)(15,35,26)(16,33,21)(17,28,19)(18,29,20), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,23)(2,27,8,24,5,21)(3,22,6,25,9,19)(4,26)(7,20)(10,33,16,30,13,36)(11,28,14,31,17,34)(12,32)(15,35)(18,29), (1,18,4,12,7,15)(2,10,5,13,8,16)(3,11,6,14,9,17)(19,34,22,28,25,31)(20,35,23,29,26,32)(21,36,24,30,27,33), (2,8,5)(10,36,24)(11,31,22)(12,32,23)(13,30,27)(14,34,25)(15,35,26)(16,33,21)(17,28,19)(18,29,20), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,23),(2,27,8,24,5,21),(3,22,6,25,9,19),(4,26),(7,20),(10,33,16,30,13,36),(11,28,14,31,17,34),(12,32),(15,35),(18,29)], [(1,18,4,12,7,15),(2,10,5,13,8,16),(3,11,6,14,9,17),(19,34,22,28,25,31),(20,35,23,29,26,32),(21,36,24,30,27,33)], [(2,8,5),(10,36,24),(11,31,22),(12,32,23),(13,30,27),(14,34,25),(15,35,26),(16,33,21),(17,28,19),(18,29,20)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

Matrix representation of C62.6C32 in GL6(𝔽19)

0181000
0180000
1180000
000100
0001270
0001011
,
0118000
1018000
0018000
000700
000070
000007
,
1180000
0181000
0180000
000100
000010
0001207
,
1100000
0110000
0011000
0001100
0000181
0001180

G:=sub<GL(6,GF(19))| [0,0,1,0,0,0,18,18,18,0,0,0,1,0,0,0,0,0,0,0,0,1,12,1,0,0,0,0,7,0,0,0,0,0,0,11],[0,1,0,0,0,0,1,0,0,0,0,0,18,18,18,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,0,0,0,0,18,18,18,0,0,0,0,1,0,0,0,0,0,0,0,1,0,12,0,0,0,0,1,0,0,0,0,0,0,7],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,1,0,0,0,10,18,18,0,0,0,0,1,0] >;

C62.6C32 in GAP, Magma, Sage, TeX

C_6^2._6C_3^2
% in TeX

G:=Group("C6^2.6C3^2");
// GroupNames label

G:=SmallGroup(324,58);
// by ID

G=gap.SmallGroup(324,58);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,145,115,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^3=1,d^3=b^2,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a*b^2,c*b*c^-1=a^3*b^4,b*d=d*b,d*c*d^-1=a^2*b^4*c>;
// generators/relations

Export

Subgroup lattice of C62.6C32 in TeX
Character table of C62.6C32 in TeX

׿
×
𝔽